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Introduction to power electronics “P-L

Power Electronics

e

Semiconductor devices:  Passive components:
transistors, diodes, and capacitors, inductors,
thyristors transformers, etc.




Motivation: Large losses in power conversion =Pi-L
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Principles of power conversion
DC-DC converter
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How can such converter be realised?
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Principles of power conversion

Solution 1: voltage divider
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These are very inefficient solutions



Principles of power conversion

Concept of switching

R (1)
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switch
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DC component of v (r) = average value:
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Fundamentals of Power Electronics, Robert W. Erickson, Dragan Maksimovi¢

D = switch duty cycle
0<D=<1

T, = switching period

1. = switching frequency

=1/T,
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Principles of power conversion

Concept of switching
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Low switching losses in power devices
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Challenges of power switches
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Off-state®: Unexpected losses from charging/dischar
output capacitance

output charge, O, (nC)
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Challenges: Thermal management cPrL

Today: Discrete devices on a PCB Future: GaN Power integrated circuits

Ambient temperature
Airflow

Heat capacity coolant
1

heat = Sensible heat

Heat sink

_ 1
HS = 37—
B Convection

Thermal management:

Thermal interface

’
TBR

;:C;(aging e How to extract heat from such integrated power chips
Condocto High heat fluxes (>200 W /cm?): operation is thermally limited
Die

P | Conduction
ower In
Q[w] 1 junction temperature



aN power electronic device

Technologies involved in making a high performance power devices
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GaN for lateral power devices



Challenges of GaN-on-Si

power devices

On a device level, the challenges are to reduce Ry and increase Vgg

Reaching the limits of GaN

GaN-on-Si device.s: ®
10F @ (MoOS)HEMTS :
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Reduced R,,

The goal for power electronics is to develop devices with:

Normally-off operation with high Vy
High Vg
Ultra-low on-resistance

=PrFL

Increased V,,

These are the static properties (but remember: switching is also important)



Trade-off between high breakdown voltage and low R, “P-L

Trade off between high Vg and small Ry,
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[1] IMEC, “Perspectives for disruptive 200 mm/8-inch GaN power device and GaN-IC technology,” SEMICON Europa 2018.[2] http:// uef.fei.stuba.sk/moode/mod/book/view.php?id=79208&chapterid=87  [3] Y. Ly, Q. Jiang, Z. Tang, S.Yang, C. Liu
and K. J. Chen, Appl. Phys. Express 8, 064101 (2015).  [4] https://industrial.panasonic.com/kr/products/semiconductors/powerics/ganpower [5] https://compoundsemiconductor.net/article/99114-heat-sinking-gan-on-silicon-the-substrate-
removal-challenge.html  [7] http://en.enkris.com/cp/htm|/?31.html [6] https://www.researchgate.net/post/Determination_of the_lattice_parameter_of_the_GaN_AIN_layers_of_a_superlattice_from_TEM_images [8] http:// www.ntt-
at.com/product/epitaxial /



Trade-off between high breakdown voltage and low R, “P-L

GaN is a lateral devices: unlike in vertical devices high V., requires larger device L.,
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Figures of merit



Vertical devices: drift region =PrL

Figure of merit for power devices: describing resistance versus breakdown voltage
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Vertical devices

100
Ideal Specific On-Resistance: ~—
R W N = BB _ 2BV 5
ON,SP — D 2 WD - T G
., Np qBV Ec 210
P
-
r > =
4BV S
Ronse = cu B E 1E
L sHaLc o 7
4 5 1 =
BFOM =¢ p1 Eé _ Vv - Limited by the channe} mobility _
n (p, = 100 cm?¥(V-s))
Ronse j ch
\ ’ '].1 T ! ! I
100 1000 10000
B.J. Baliga, Fundamentals of Power Semiconductor Devices, Springer 2008 Breakdown Vﬂltage (V)
. ik E.
) [em?/(V-5)] (MV/cm)
Si| 11.8 1350 0.3
4H-SiC 10.0 720 2.0
GaN 9.0 900 3.3

Channel mobility limits the total resistance: MOS channel mobility is very important

Can we use this FOM for lateral devices? 17



Figure of merit for lateral devices
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Enhancement mode (normally-off operation)



Enhancement mode (normally-off operation) “P-L

Why do we need enhancement mode?

Fail safe operation

HEMTs are naturally
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Normally-off operation is required!
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=PFL

Enhancement mode (normally-off operation)

AlGaN barrier recess? Cascode configuration

LV Si HV GaN
FET HEMTD
bren et M Oé\cha“nel Normally of‘f = T : GaN channel
2um i-GaN G - _: Normally on
buffer Si or SiC substrate
sapphire substrate S

STMicroelectronics, CEA-Leti

From transphorm/Nexperia

O Lgp=10um @ Lgp=15pm (Vyy @ 1 pA/mm)

Panasonic/Infineon/GaN systems/EPC

1000 15
O MIT'12
800k HKUiﬂS @ PruS HKUgTilﬁ' '
3 @ HKUST18 Tl =
= N HKUSTI8 . E
< 600 O‘I\'idE 10 ° | @ HKUST'13 410 &
£ MITA2 HKUST'16 o Orpkuis - —~
W :
0400 ®  @HKkusTis o ae
® PKU1B HKUST15 _
® NRL'5 s
oo VA _
0 1 24 3 1 2 3
(a) Vin (V) (b) Vi (V)

Trade-off between V,, and Ry



Enhancement mode (normally-off operation) “P-L

P-GaN gates is the most commonly available solution: Gate can be ohmic or Schottky

pGaN gate E-mode

GND I Vb E
T % T
- pGaN . A
2DEG - coss055 50066 Schottky Ohmic E —— After introduction of a
contact contact : p-GaN cap layer —
GaN 2
(T
: . =
U i i 3
?Mela% i d =
277 T
Nonnally-;)—f-f—;;;ration
(AlGaN/GaN heterostructures) (p-GaN/AlGaN/GaN heterostructures)
Advantages:

« Single transistor delivers E-mode
+ Compatibility with current gate drivers (0-6V gate drivers)

Challenges:

» Trade-off between Ron and Vth

» Infroduces a gate diode: gate voltage swing is limited (~6-7 V).

* A higher positive gate bias can forward-bias or cause charge injection in the p-GaN gate structure. High leakage
current.

« Gatereliability is thus a concern — even slight over-voltage can lead to permanent device degradation



Tri-gate for normally-off power transistors =P-L

Nanowires + large work-function gate metal
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Nanowires for high voltage operation

L. Nela, M. Zhu, J. Ma and E. Matioli, IEEE EDL, val. 40, no. 3, pp. 439-442, March 2019



Higher voltage: managing electric fields



Challenges to Increase the Vg cPi-L

Field plates are ubiquitous in lateral GaN HEMTs: by extending a metal plate (connected to gate or source) over the
drain-side drift region, the peak field at the gate edge is reduced and the field is spread out more linearly, allowing a
higher Vbr for the same channel-to-drain distance.

E field peaks at the gate edge, degrading the V,;

Passivation
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GND -10V +200 V

Power metal

" Si0, (4)
Metal 1
Si0, (3)

Si0, (2)
¥_-/

" Gate metal'\——slo—lm—

Buffer
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[1] IMEC, “Perspectives for disruptive 200 mm/8-inch GaN power device and GaN-IC technology,” SEMICON Europa 2018.

There is a trade-off. field plates add to device capacitances (Cgd), which can increase switching Ioss Thus
manufacturers optimize field plate dimensions to balance high VBR and fast switching.



High Vg, at small L;, for smaller R,,-A =PrL

The electric field in lateral devices is not uniform and buffer limit the breakdown voltage
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High V;,, at small L, for smaller R,,-A =P-L

Electric field distribution in lateral device is inhomogeneous: limits the breakdown voltage
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New concepts: Slanted tri-gates for high voltage devices =Pr-L

Planar TG Dual TG Triple TG Slanted TG

Drain —1 (b)

Barrier Channel
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V,, can be engineered with tri-gate width:
Flexible design flexibility of field plates (with one lithography step)

J. Ma and E. Matioli, IEEE Electron Device Letters 38 (9), 1305-1308, Jul. 2017



New concepts: Slanted tri-gates for high voltage devices =PrL

Planar gate (P): Tri-gate (TG):
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J. Ma and E. Matioli, IEEE Electron Device Letters 38 (9), 1305-1308, Jul. 2017

Enhanced Vg & Reduced Ry A by the slanted tri-gate



Advanced concept : Reaching ultra low on-resistance



Reducing sheet resistance

Intrinsic trade-off: increasing ns deteriorates u

=Pr
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Low sheet resistance (Rg,) requires both high ng and high u
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Multichannel power devices “P-L

Our approach: Multiple 2DEG channels

Source Multi-channel _—
N (@107 cm™)
| _/ 4 8

structures 0 12

AlGaN/AIN

Barrier

Barrier

Elison Matioli

Barrier

Barrier

Barrier

J. Ma, C. Erine, P. Xiang, K. Cheng and E. Matioli, APL, 113, 24, 242102, 2018
J. Ma, C. Erine, M. Zhu, L. Nela, P. Xiang, K. Cheng and E. Matioli, IEEE IEDM 2019
L. Nela, J. Ma, C. Erine, P. Xiang, T.-H. Shen, V. Tileli, T. Wang, K. Cheng, E. Matioli, Nature Electronics, Mar. 2021
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Multichannel power devices

Multi-channel: high p and high Ns

=Pr

4-times higher n, than in single-channel AIGaN/GaN, together with high mobility
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*Only Hall results are included

AIN/GaN (10x-channels): 128 ohm/sqg (CORNELL): Y. Cao, et al, J. Cryst. Growth 323,529 (2011).
INAIN/GaN (10x-channels) 36 ohm/sq (our group): P Sohi et al 2021 Semicond. Sci. Technol. 36 055020 (2021)



Multichannel power devices =P

Tri-gates are unique to control multi-channels

Low R, is useless if the channels cannot be controlled

Planar gate
L——
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Multichannel power devices P

Tri-gates are unique to control multi-channels

Low R, is useless if the channels cannot be controlled

Planar gate S A —— Tri-gate

'Planar-gate  hbf 4,

1m "Always-ON"
E
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< Tri-gate {0.2
2 1

_ gate
breakdown

—
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Excellent 3D tri-gate control
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Channels controlled one by one 1f
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Multichannel power devices “P-L

E-mode operation with high work-function gate metal

High work-function gate metal Full E-mode operation
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Full e-mode operation can be achieved despite the large n,
L Nela, M Zhu, J Ma, E Matioli, IEEE Electron Device Letters, 40 (3), 439-442 2019 14

L. Nela, J. Ma, C. Erine, P. Xiang, T.-H. Shen, V. Tileli, T. Wang, K. Cheng, E. Matioli, Nature Electronics, Mar. 2021



Multichannel power devices

Multi-channel control: Tri-gates are unique solution
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Issue of high breakdown voltage in multichannels

2D Field Plates are NOT suited for high conductivity channels
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Slanted tri-gate termination for multichannel devices
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Multi-channel nanowire devices for efficient power
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