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Outline of the electronic module

• Introduction
• Vertical devices: GaN PN diodes and MOSFETs
• Novel concepts in vertical power electronics

Lecture III: Vertical Power devices
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• Introduction
• Heterostructures
• Lateral devices: HEMTs

Lecture IV: Current trends – state of the art

Lecture I: Electronic devices

Lecture II: Lateral Power devices

• E- and D-mode devices
• Reaching low resistance and high voltage
• current commercial technology
• Losses in GaNpower devices

• Equivalent circuit and FOM: important aspects
• Technologies to improve RF performance

Lecture III: RF devices

• recent advances in the literature in GaN electronics
• superjunctions



Power Electronics

Semiconductor devices: 
transistors, diodes, and 

thyristors

Passive components:
 capacitors, inductors, 

transformers, etc.

Introduction to power electronics



Motivation: Large losses in power conversion
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15 % loss
20 % loss

(power conversion)

60 % loss

20 % loss

(power conversion)
Source: Infineon Technologies

Wideband gap semiconductors 
outstanding prospect for efficient 

power conversionPoorer efficiency: higher thermal management requirements



DC-DC converter

How can such converter be realised?

Principles of power conversion
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Solution 1: voltage divider

Solution 2: linear amplifier

Variable resistance

Principles of power conversion

These are very inefficient solutions
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Concept of switching

Fundamentals of Power Electronics, Robert W. Erickson, Dragan Maksimović

Principles of power conversion
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Concept of switching

Fundamentals of Power Electronics, Robert W. Erickson, Dragan Maksimović

Principles of power conversion
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I. Static behavior

Reduce on-resistance (RON)

Increase breakdown voltage (VBR)

II. Dynamic behavior: 

 Low switching losses in power devices

Device requirements



Challenges of power switches

I. Static behavior

Reduce on-resistance (RON)

Increase breakdown voltage (VBR)

Normally-off operation

II. Dynamic behavior: switching losses in power devices

On-state:  Dynamic RDS,ON: Increase in RON during switching Off-state*: Unexpected losses from charging/discharging 

output capacitance

H. Zhu and E. Matioli, IEEE Transactions on Power Electronics, 2023
N. Perera, A. Jafari, L. Nela, G. Kampitsis, M. S. Nikoo, and E. Matioli, IEEE COMPEL 

2020



Challenges: Thermal management

Today: Discrete devices on a PCB Future: GaN Power integrated circuits

Thermal management:

How to extract heat from such integrated power chips

High heat fluxes (>200 W/cm2): operation is thermally limited

Heat capacity coolant

Heat sink

Thermal interface

Packaging

Die

Airflow
Ambient temperature

junction temperature
Power In
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Normally-OFF operation

[1] 

High breakdown voltage (VBR)

[4] [3] 

Low dynamic RON

Strain balancing

[5] [6] 

High µe & VBR

[7] 

[8] 

AlGaN/GaN

Technologies involved in making a high performance power devices

Substrate: 
Silicon, Sapphire

GaN power electronic device



GaN for lateral power devices
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Limit in RON for

650 V power 

GaN devices
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Reaching the limits of GaN

On a device level, the challenges are to reduce RON and increase VBR

Increased Vbr

Reduced Ron

The goal for power electronics is to develop devices with:
• Normally-off operation with high VTH

• High VBR

• Ultra-low on-resistance

Challenges of GaN-on-Si power devices

These are the static properties (but remember: switching is also important)



𝑅ON ∙ 𝐴 ≈  𝑅s ∙
𝐿

𝑊
∙ 𝑊 ∙ 𝐿 = 𝑅s ∙ 𝐿2 

Trade off between high VBR and small RON

[1] IMEC, “Perspectives for disruptive 200 mm/8-inch GaN power device and GaN-IC technology,” SEMICON Europa 2018.[2] http://uef.fei.stuba.sk/moodle/mod/book/view.php?id=7920&chapterid=87      [3] Y. Lu, Q. Jiang, Z. Tang, S. Yang, C. Liu 
and K. J. Chen, Appl. Phys. Express 8, 064101 (2015).      [4] https://industrial.panasonic.com/kr/products/semiconductors/powerics/ganpower [5] ht tps://compoundsemiconductor.net/article/99114-heat-sinking-gan-on-silicon-the-substrate-
removal-chal lenge.html       [7] http://en.enkris.com/cp/html/?31.html  [6] https://www.researchgate.net/post/Determination_of_the_lattice_parameter_of_the_GaN_AlN_layers_of_a_superlattice_from_TEM_images [8] http:// www.ntt-
at.com/product/epitaxial/
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[1] IMEC, “Perspectives for disruptive 200 mm/8-inch GaN power device and GaN-IC technology,” SEMICON Europa 2018.[2] http://uef.fei.stuba.sk/moodle/mod/book/view.php?id=7920&chapterid=87      [3] Y. Lu, Q. Jiang, Z. Tang, S. Yang, C. Liu 
and K. J. Chen, Appl. Phys. Express 8, 064101 (2015).      [4] https://industrial.panasonic.com/kr/products/semiconductors/powerics/ganpower [5] ht tps://compoundsemiconductor.net/article/99114-heat-sinking-gan-on-silicon-the-substrate-
removal-chal lenge.html       [7] http://en.enkris.com/cp/html/?31.html  [6] https://www.researchgate.net/post/Determination_of_the_lattice_parameter_of_the_GaN_AlN_layers_of_a_superlattice_from_TEM_images [8] http:// www.ntt-
at.com/product/epitaxial/

Trade-off between high breakdown voltage and low RON
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Figures of merit
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Figure of merit for power devices: describing resistance versus breakdown voltage

Ec = qNd/eps*WD

Ec = 2VBR/WD = qNdWD/eps

VBR = qNdWD
2/2eps



Channel mobility limits the total resistance: MOS channel mobility is very important

Ideal Specific On-Resistance:
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17Can we use this FOM for lateral devices?



Ideal Specific On-Resistance:

Figure of merit for lateral devices

18
L. Nela, C. Erine, M. V. Oropallo and E. Matioli, IEEE Journal of the Electron Devices Society, vol. 9, pp. 1066-1075, 2021
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Enhancement mode (normally-off operation)



Inverter

V

gridFilter
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CDC
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module
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dc 
breaker

ac realy
Drive1

Drive4 Drive6

Drive3

Drive2

Drive5

PWM1
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PWM3

PWM6

PWM5

PWM2

PWM1...6

ΜικροεπεξεργαστήςMicro-controller

Fail safe operation

Normally-off operation is required!

Failure

DC link short

Why do we need enhancement mode?
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Enhancement mode (normally-off operation)

Si substrate

GaN

AlxGa1-xN
S D

G

2DEG

Buffer layer

HEMTs are naturally 
normally-on devices



p-GaN cap layer3Cascode configurationAlGaN barrier recess2

Enhancement mode (normally-off operation)

Trade-off between Vth and RON 

Panasonic/Infineon/GaN systems/EPCSTMicroelectronics, CEA-Leti From transphorm/Nexperia
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pGaN gate E-mode

Si substrate

GaN

Buffer layer

S
2DEG

G

GND VG VD

D
AlGaN

pGaN

Advantages: 
• Single transistor delivers E-mode
• Compatibility with current gate drivers (0-6V gate drivers)

Challenges:
• Trade-off between Ron and Vth
• Introduces a gate diode: gate voltage swing is limited (~6–7 V). 
• A higher positive gate bias can forward-bias or cause charge injection in the p-GaN gate structure. High leakage 

current.

• Gate reliability is thus a concern – even slight over-voltage can lead to permanent device degradation

Enhancement mode (normally-off operation)

P-GaN gates is the most commonly available solution: Gate can be ohmic or Schottky
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A’
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Nanowires for high voltage operation
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L. Nela, M. Zhu, J. Ma and E. Matioli, IEEE EDL, vol. 40, no. 3, pp. 439-442, March 2019

Tri-gate for normally-off power transistors

	

Hybrid Tri-anodeCathode

(a) Si

GaN
AlGaN

Al2O3

(b) Tri-gate: (c) Tri-anode:

GaN GaN

2DEG

Al2O3
Metal

d w

h

Top SBDs

Sidewall SBDsTri-gate Tri-anode

Tri-gate

MOS

C

Sidewall SBDs

Top SBDs

A

(f)

tri-gate tri-anode

(e)(d)

FPC

11 µm 5 µm

A

1 µm

Fig. 1. (a) Schematic of the fabricated hybrid tri-anode SBDs. Cross-sectional 
schematics of the (b) tri-gate and (c) tri-anode regions. (d) Top-view SEM 
image of the fabricated hybrid tri-anode SBDs. (e) Zoomed-in SEM 
observation of the Tri-gate and Tri-anode regions. (f) Equivalent circuit of the 
hybrid tri-anode SBD. 
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Higher voltage: managing electric fields



Challenges to increase the VBR

28
There is a trade-off: field plates add to device capacitances (Cgd), which can increase switching loss. Thus, 
manufacturers optimize field plate dimensions to balance high VBR and fast switching. 

GND -10 V +200 V

Gate Drain

LGD

Silicon

Buffer

GaN

Field plates are ubiquitous in lateral GaN HEMTs: by extending a metal plate (connected to gate or source) over the 
drain-side drift region, the peak field at the gate edge is reduced and the field is spread out more linearly, allowing a 
higher Vbr for the same channel-to-drain distance. 

[1] 

High breakdown voltage (VBR)

Si (111)

Buffer

S

D

PassivationFP1

FP2

FP3

GG

AlGaN/
GaN

[1] IMEC, “Perspectives for disruptive 200 mm/8-inch GaN power device and GaN-IC technology,” SEMICON Europa 2018.      

E field peaks at the gate edge, degrading the VBR



High VBR at small LGD for smaller RON·A

The non-uniform E field degrades the VBR

The electric field in lateral devices is not uniform and buffer limit the breakdown voltage 
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Slanted Field Plates: 

• Challenging design and difficult to control oxide thickness
• Limits the design flexibility of the field plates

Electric field distribution in lateral device is inhomogeneous: limits the breakdown voltage

[1] J. Wong, et al, IEEE EDL, 38, 95, 2017.

High VBR at small LGD for smaller RON·A



Vth can be engineered with tri-gate width:
Flexible design flexibility of field plates (with one lithography step)

Planar TG Dual TG Triple TG Slanted TG

0 5 10 15

V
p
(x)

x (µm)

V
BR

  F  E
E

C

New concepts: Slanted tri-gates for high voltage devices

J. Ma and E. Matioli, IEEE Electron Device Letters 38 (9), 1305-1308, Jul. 2017
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J. Ma and E. Matioli, IEEE Electron Device Letters 38 (9), 1305-1308, Jul. 2017
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Advanced concept : Reaching ultra low on-resistance
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Intrinsic trade-off: increasing ns deteriorates 𝜇
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Low sheet resistance (Rsh) requires both high ns and high 𝜇

Reducing sheet resistance
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Our approach: Multiple 2DEG channels

J. Ma, C. Erine, P. Xiang, K. Cheng and E. Matioli, APL, 113, 24, 242102, 2018
J. Ma, C. Erine, M. Zhu, L. Nela, P. Xiang, K. Cheng and E. Matioli, IEEE IEDM 2019
L. Nela, J. Ma, C. Erine, P. Xiang, T.-H. Shen, V. Tileli, T. Wang, K. Cheng, E. Matioli, Nature Electronics, Mar. 2021
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Multichannel power devices



Multi-channel: high µ and high Ns

4-times higher ns than in single-channel AlGaN/GaN, together with high mobility

AlGaN barrier

Single-channel:

Multi-channel:

This work (AlGaN barriers)

*Only Hall results are included

Other barriers are also possible:
AlN/GaN (10x-channels): 128 ohm/sq (CORNELL): Y. Cao, et al., J. Cryst. Growth 323, 529 (2011).

InAlN/GaN (10x-channels) 36 ohm/sq (our group): P Sohi et al 2021 Semicond. Sci. Technol. 36 055020 (2021)

Multichannel power devices



Tri-gates are unique to control multi-channels

Planar gate 

Poor electrostatic control
Channels controlled one by one

Low RSh is useless if the channels cannot be controlled

Multichannel power devices
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Planar gate Tri-gate

Poor electrostatic control
Channels controlled one by one

Excellent 3D tri-gate control
Simultaneous control

Low RSh is useless if the channels cannot be controlled
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Tri-gates are unique to control multi-channels

Multichannel power devices
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14

E-mode operation with high work-function gate metal

Full E-mode operationHigh work-function gate metal

L. Nela, J. Ma, C. Erine, P. Xiang, T.-H. Shen, V. Tileli, T. Wang, K. Cheng, E. Matioli, Nature Electronics, Mar. 2021

Multichannel power devices
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Multi-channel control: Tri-gates are unique solution

L. Nela, J. Ma, C. Erine, P. Xiang, T.-H. Shen, V. Tileli, T. Wang, K. Cheng, E. Matioli, Nature Electronics, Mar. 2021
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RON,sp : 0.46 mΩcm2

Multichannel power devices



Issue of high breakdown voltage in multichannels
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Gate only:

3D Field Plates are needed 
for high-conductivity multi-channels

Gate + Planar FP:

High field

2D Field Plates are NOT suited for high conductivity channels

J. Ma, C. Erine, M. Zhu, L. Nela, P. Xiang, K. Cheng and E. Matioli, IEDM 2019

FP breakdown
Simulated electric field 

Multichannel power devices
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